Regularity of roots of polynomials

Adam Parusiński and Armin Rainer

Abstract

We show that smooth curves of monic complex polynomials $P_{a}(Z)=$ $Z^{n}+\sum_{j=1}^{n} a_{j} Z^{n-j}, a_{j}: I \rightarrow \mathbb{C}$ with $I \subset \mathbb{R}$ a compact interval, have absolutely continuous roots in a uniform way. More precisely, there exist a positive integer k and a rational number $p>1$, both depending only on the degree n, such that if $a_{j} \in C^{k}$ then any continuous choice of roots of P_{a} is absolutely continuous with derivatives in L^{q} for all $1 \leq q<p$, in a uniform way with respect to $\max _{j}\left\|a_{j}\right\|_{C^{k}}$. The uniformity allows us to deduce also a multiparameter version of this result. The proof is based on formulas for the roots of the universal polynomial P_{a} in terms of its coefficients a_{j} which we derive using resolution of singularities. For cubic polynomials we compute the formulas as well as bounds for k and p explicitly.

Mathematics Subject Classification (2010): 26C10 (primary); 26A46, 30C15, 32S45 (secondary).

